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A necessary and sufficient condition for a finite dimensional Tchybycheff space
of real functions on a real set containing its endpoints to contain a 1-codimensional
Tchebycheff subspace is given. Examples of n-dimensional Tchebycheff spaces on
closed intervals that do not contain (n - I)-dimensional Tchebycheff subspaces are
given for all n> 3.

I. INTRODUCTION

By a well-known theorem of Krein, every Tchebycheff space (T-space) of
real-valued functions defined on an open interval contains a I -codimensional
T-subspace. In [21 we considered T-spaces on real sets containing at most
one endpoint, and gave a necessary and sufficient condition for these
T-spaces to contain I-codimensional T-subspaces.

In this paper we discuss this property for T-spaces on real sets containing
both endpoints.

DEFINITION I ([ I J). The set of the real-valued functions I!' 12"'" Ik'
defined on a real set M, is called a Tchebycheff system (T-system) if

(1)

has a constant sign for all 11 ,12 "", Ik E M with II < 12 < ... < {k'

If L is the span of a T-system, then it is called a T-space. Clearly, every
basis of a T-space is aT-system.

An equivalent definition of aT-space L can be given by means of the
number of zeros and the number of sign changes of the elements of L. If
there exist 11'12 , ... ,tr +1 EM such that sgnflt;}=-sgn/(ti+lbt=O for
i = I, 2,... , r, we say that I has r sign changes on M. IfI has r but not r + I
sign changes, we say that I has exactly r sign changes on M and is denoted
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by S - (f, M). By Z (f, M) we denote the number of the distinct zeros off in
M.

DEFINITION 2 ([5], Lemma 1]). Let L be a k-dimensional space of real­
valued functions defined on M. Then L is a T-space if for every f E L \ jO f,
Z(f,M)~k-l and S-(f,m)~k-1.

2. 1-CODIMENSIONAL T-SUBSPACES

We consider T-spaces on a real set M containing its infimum and
supremum. Since every 2-dimensional T-space on M contains a positive
function, one concludes that it contains a 1-codimensional T-subspace. This
is not true in general for T-spaces of higher dimension. In Section 3 we show
that for every n ~ 3 there exists an n-dimensional T-space on a closed
interval that does not contain (n - 1)-dimensional T-subspaces.

We first give a necessary and sufficient condition for a T-space on M to
contain a 1-codimensional T-subspace. Let fl , f2 ,..., fn +2' n ~ 1, be defined
on the set M, forming a T-system on it, and let L be their span. If a = inf M
and b = sup M, then

and

La = {fifE L,f(a) = Of,

L b = {flfEL,f(b)=Of,

(2)

(3)

(4 )

are T-spaces on Ma=M\ja}, Mb=M\{b}, and Ma,b=MarlMb, respec­
tively.

If L contains a 1-codimensional T-subspace, L', on M, then

and

L~= {flfEL',f(a)=Of,

L;'= {flfEL',f(b)=O}

(2')

(3')

will be 1-codimensional T-subspaces on M a and M b , respectively. If n ~ 2,
then

(4')

will be a 1-codimensional T-subspace of La,b on Ma,b'
We now show that the converse is also true.
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THEOREM 1. Let M be a real set containing both its infimum and
supremum. Let {/;} 7~} be a set of n + 2 real-valued functions defined on M
and forming a T-system on it and let La' L b, and La,b be defined as above.
Then L contains a l-codimensional T-subspace on M iff

(i) La and L b have l-codimensional T-subspaces L~ and L~ on M a
and M b, respectively, and

(ii) if n ~ 2, then L~,b = L~ n L~ has dimension n - 1.

Remark. If L~,b is an (n - 1)-dimensional space, then it is a T-space on

Ma,b'

Proof We need only show the "if part." Let {g"gz, ... ,gn'u,v} be a
basis of L such that

gi(a) = giCb) = 0, i = 1,2,... , n, (5)

u(a) = (-lY, u(b) = 0, (6)

and

v(a) = 0, v(b) = 1. (7)

Clearly, La=span{gl,gz,... ,gn'v}, Lb=span{gl,gz,oo.,gn,u} and
La,b = span{ g" gz,· .. , gn}'

Assume first that n ~ 2. By our hypothesis, we may assume (replacing u
and v by u - 2::7=1 aigi and v - 2::7=1 bigi if necessary) that

(8)

and

(9)

Clearly

(10)

We may also assume that

(11 )

and
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(13)

u (gl' g2"'" gn-I' U) < 0, whenever a <t l < t2< ... < tn < b, (15)
tl' t2,· .. , tn_1' tn

also

whenever a <t l < t 2 < ... < tn+ I < b. (16)

We now show that {gI' g 2'"'' gn_I' U, V} forms a T-system on M.
Consider the function h = Au +Bv + 'E..7-:i c; g;. If AB = 0, then
Z(h, M) <nand S-(h, M) <n. If AB < 0, then it follows from (13) and (15)
that Z(h, Ma,b) <n - 1 and Z(h, M) <n - 1. Also S-(h, Ma.b) <n - 1 and
since h(a) = (_l)nA and h(b) = B, one concludes that S - (h, M) <n ~ 1.
Similarly, in case AB > 0, (14) and (16) imply that Z(h, M) <nand
S-(h,M)<n. Hence {gl'g2, ... ,gn_I'U,v} is a T-system on M. This
completes the proof of the theorem for n ~ 2.

For n = 1, L is a 3-dimensional T-space. L a •b is a I-dimensional space,
i.e., La,b=span{g}, where g(a) = g(b) =0. Also, La=spanjg,v},
L b= span{ g, u}, L~ = span{v}, and L~ = span{u} are T-spaces on M a and
Mb' and as before L' = span {u, v} is a T-space on M, which completes the
proof of the theorem.

Theorem 1 requires that M contain at least n + 2 points including its
endpoints. We now assume that M has a betweeness property, namely, if
x, y E M with x < y, then there exists a point z E M with x < z < y.

Let now wa(t)=max{maxl(i(nlgi(t)I,lv(t)l} for tEMa and wb(t)=
max{maxl(i(n Ig;(t)l, lu(t)l} for t E Mb. We define

y;(t) = g;(t)/wb(t), i = 1,2,... , n, tEMb, (17)

Yn+ I (t) = u(t)/wb(t), tEMb (18)

z i(t) = g;(t)/wa(t), i = 1,2,... , n, tEMa, (19)

and

zn+ I(t) = V(t)/wa(t), tEMa· (20)
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Extend (17)-(20) to M by

y;(b) = lim y;(t),
l-b'

z;(a) = lim z;(t),
I_a'

i = 1,2,..., n + 1,

i = 1,2,.. :, n + 1,

(21 )

(22)

where a' = inf M a and b' = sup M b (see [2,3 D.
By [2), a necessary and sufficient condition for La and L b to contain a 1­

codimensional T-subspace on M a and M b , respectively, is that

are not proportional and also

and

and

(23)

(24 )

are not proportional.
Following the technique of [2, Theorem 1], one finds that L~ n L~ is an

(n - 1)-dimensional space iff

(25)

We have proved

THEOREM 2. Let g I' g2"" gn' U, v be as in Theorem 1. Let M have the
betweeness property and let YPY2'''''Yn+P zpz2"",zn+l be defined by
(17)-(22). Then span{gpg2,...,gn'u,v} contains a I-codimensional T­
subspace on M !iT (23)-(25) hold.

Notice that in [2), continuity had been assumed but it can be easily seen
that the results of [2 J hold without any continuity assumptions.

3. T-SPACES THAT HAVE No I-CODIMENSIONAL T-SUBSPACES

In [4), Zielke shows that for every n > 2, there exist n-dimensional T­
spaces, on closed and on half open intervals that have no Markov basis. We
now show, using the same and analogous examples, that for every n > 2
there exists an n-dimensional T-space on a closed interval that has no 1­
codimensional T-subspace.

Case 1 (n odd). Consider first the (n - I)-dimensional space spanned
by

640/40/2-6
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fl(t) = t

fJt) = ti-Z(tZ- 1), i=2,3,...,n-l,

defined on [-1, 1).
This is aT-space [4] which does not contain a I-codimensional T­

subspace [2]. Define Po = 1,

pi(t)=(I-t)/;(t), i=I,2,...,n-l,on [-1,1].

L=span{PO,PI,...,Pn_tl is a T-space on [-1,1] (see 14]), and if L
contains a I-codimensional T-subspace, then L; (in the notation of
Theorem 1) would contain a l-codimensional T-subspace on [1, 1), which is
impossible since L; is generated by the /;'s multiplied by a positive function.

Case 2 (n even (n > 2)). Similarly,
L = span{po, PI'"'' Pn-I}' where Po = 1,

and

one can show that

i = 2, 3,... , n - 1,

is a T-space on [-1,1] and since L I = {p I pEL, p(l) = O} is a T-space (on
[-1, 1)) that does not contain a l-codimensional T-subspace [2, Theorem 11,
L does not contain a l-codimensional T-subspace on [-1, 1].

Zielke shows [6, p. 45], that span {fl ,... , fn' g1'"'' gn}, where /;(t) = sin(it)
and gJt) = cos(it), i = 1, 2,..., n, is a T-space on [0, n], for n ~ 2. He proves
that this T-space has no Markov basis and raises the question of whether it
contains a l-codimensional T-subspace or not. Applying Theorem 2, one
concludes that it contains no such T-subspace.
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